

- Accepts +/- 0.010" Axial Shaft Play
- 50 to 5,000 Cycles per Revolution (CPR)
- Tracks 0 to 300,000 Cycles per Second
- 2-Channel Quadrature Differential Squarewave Outputs
- Third Index Channel
- Operating Temperature of -40° to $+100^{\circ} \mathrm{C}$
- Powered from a Single +5VDC Power Supply

- RoHS Compliant and REACH Certified

The ENC-A5DI is a differential encoder designed for quick and simple assembly to any minimum shaft length 0.445 " and maximum shaft length of .570 ", and shaft size ranging from 0.079 " to 0.394 " in diameter. The ENC-A5DI module is designed to detect the rotary position with a code wheel. When attached to the end of a shaft, the encoder provides digital feedback information. This differential encoder consists of a LED source lens and a monolithic detector IC enclosed in a small polymer package. These modules implement phased array detector technology providing superior performance and tolerances over traditional aperture mask type encoders. The ENCA5DI series provides digital quadrature differential outputs on all resolutions and are capable of sinking or sourcing 8 mA each. These encoders are powered from a single +5VDC power supply and are RoHS compliant and REACH certified.

L010727

DEFAULT OPTION:

E-Option:

H-Option:

Default Option:

Note: Dimensions are in inches

Cover Options:	Description
E- Option	E-Option provides a cylindrical extension cover for larger shafts. The required shaft length is $.445^{\prime \prime}$ to $.750^{\prime \prime}$. Note: E-option + R-Option the required shaft length is .570 " to .875".
H- Option	Shafts 2 mm to $1 / 4^{\prime \prime}$, a $.295^{\prime \prime}$ diameter hole is supplied. Shafts $5 / 16^{\prime \prime}$ to 10 mm , a $.438^{\prime \prime}$ diameter hole is supplied. Required shaft length $>0.445^{\prime \prime}$ Note: H-Option + R-Option the required shaft length is > .570"
Default Option	The required length is $.445^{\prime \prime}$ to $.570^{\prime \prime}$ Note: Default Option + R-Option the required shaft length is . $570^{\prime \prime}$ to $.695^{\prime \prime}$

3-OPTION:

3-Option: Makes all five hole diameters $.125^{\prime \prime}$
(Note: Base Mounting Screws are NOT included. \#2-56 or \#4-40 screws can be used to mount the base to your mounting surface.)

Differential Encoder Timing Diagram

A-Option: Adds a .497" diameter alignment shoulder designed to slip into a $.500^{\prime \prime}$ diameter recess in the mounting surface centered around the shaft.

R-Option: Adapter is an $1 / 8^{\prime \prime}$ thick fiberglass adapter which is pre-mounted to the base of the encoder. It allows the encoder to rotate +/- 15 degrees.
"This option adds $1 / 8$ " to the required shaft length.

G-Option: Includes molded ears which enables it to be mounted to a $1.812^{\prime \prime}$ diameter bolt circle. Mounting holes are designed to fit $4-40$ screws. Will work with shaft lengths of $.445^{\prime \prime}$ to $.570^{\prime \prime}$ and does not add to the required shaft length.

DIFFERENTIAL ENCODER PINOUT TOP OF ENCODER FACING PLUG

Model \#	Description					
CPR(N):	The Number of Cycles Per Revolution					
One Shaft Rotation:	360 mechanical degrees, N cycles					
One Electrical Degree (${ }^{\circ} \mathrm{e}$):	1/360th of one cycle					
One Cycle (C):	360 electrical degrees $\left({ }^{\circ} \mathrm{e}\right)$. Each cycle can be decoded into 1 or 4 codes, referred to as X 1 or X 4 resolution multiplication					
Symmetry:	A measure of the relationship between (X) and (Y) in electrical degrees, nominally 180 ${ }^{\circ} \mathrm{e}$					
Quadrature (Z):	The phase lag or lead between channels A and B in electrical degrees, nominally $90^{\circ} \mathrm{e}$					
Index (CH I):	The Index Output goes high once per revolution, coincident with the low states of channels A and B, nominally $1 / 4$ of one cycle ($90^{\circ} \mathrm{e}$)					
Timing Characteristics		Symbol	Min	Typ	Max	Units
Cycle Error		C	-	3.0	5.5	${ }^{\circ} \mathrm{e}$
Symmetry		X, Y	150	180	210	${ }^{\circ} \mathrm{e}$
Quadrature		Z	60	90	120	${ }^{\circ} \mathrm{e}$
Index Pulse Width		Po	60	90	120	${ }^{\circ} \mathrm{e}$
Ch. I Rise After Ch. B or Ch. A	A Fall	t1	10	100	250	ns
Ch. I Fall After Ch. B or Ch. A	Rise	t2	70	150	300	ns

Parameter	Min	Typ	Max	Units
Supply Voltage	4.5	5.0	5.5	Volts
Supply Current CPR < 500, no load $C P R \geq 500$ and <2000, no load CPR ≥ 2000		$\begin{aligned} & 29 \\ & 57 \\ & 73 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \\ & 88 \end{aligned}$	mA
Output Low ($\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ max)	-	0.2	0.4	Volts
Output High* $\mathrm{I}_{\mathrm{OL}}=-8 \mathrm{~mA} \max$	2.4	3.4	-	Volts
Differential Output Rise/ Fall Time	-	-	15	nS

* Unloaded high level output voltage is 4.80 V typically, 4.2 V minimum.

Recommended Operating Conditions	Min	Max
Units		
Temperature (CPR <2000)	-40	100
${ }^{\circ} \mathrm{C}$		
Temperature (CPR ≥ 2000)	-25	100
${ }^{\circ} \mathrm{C}$		
Load Capacitance	-	100
Count Frequency (CPR $\leq 1250)$	-	300
Count Frequency (CPR 2000-2500)	-	360
Count Frequency (CPR $4000+$)	-	720

Parameter	Max	Units
Vibration (5 to 2 kHz$)$	20	g
Shaft Axial Play	$+/-0.01$	in.
Shaft Eccentricity Plus Radial Play	0.004	in.
Acceleration	250,000	$\mathrm{rad} / \mathrm{sec}^{2}$

Speed Calculation		Units
CPR <2000	$18 \times 10^{6} /$ CPR	RPM
CPR ≥ 2000 and <4000	$21.6 \times 10^{6} /$ CPR	RPM
CPR ≥ 4000	$43.2 \times 10^{6} /$ CPR	RPM

*60,000 RPM is the maximum RPM due to mechanical limitations.

Cables:

The following cables are compatible with Anaheim Automation's A5DI series encoder. Select a cable length from the table below:

Cable Part Number	Length
ENC-CBL-AA4706	1 ft.
ENC-CBL-AA4706-5	5 ft.
ENC-CBL-AA4706-10	10 ft.
ENC-CBL-AA4706-20	20 ft.

NOTE: For pricing and other information on cables and centering tools, please visit Accessories on our website.

Centering Tools:

Centering tools are optional, but recommended for a more precise installation.

